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Abstract—A constitutive equation of anisotropic dry friction with tensors depending on a sliding
direction is formulated. It describes centrosymmetric and non-centrosymmetric anisotropic friction.
Symmetries, principal, neutral and extremal value directions of anisotropic friction are investigated.

1. INTRODUCTION

There has been little progress towards a general model for friction. The primary reason for
this is the complex nature of friction. Descriptions applied in classical mechanics are very
simple and they do not include fundamental experimental facts. It is no wonder that, for
enginecring practice, experimental investigations have been developed in which real prob-
lems arc considered. These investigations are very uscful, but it is difficult to form a general
picture of the phenomenon and to introduce a gencralization of observations. The second
approach is a product of fundamental investigations in the physics and chemistry of surfaces.
These works cxplain the mechanisms of the phenomenon, but they are very often not
suitable for technological applications.

The best we can do is to study friction at various stages and from this reconstruct a
picture of what is going on. The rescarch needed to understand and predict the phenomenon
require both mathematical and experimental modelling,

Mathematical models are defined by equations and dcefinitions of a physical character
of variables and their relations to observable facts. They describe relations which are valid
for many bodics and contact conditions. This generality and a strong experimental basis
are the main advantages of the mathematical modelling. A simplicity in the mathematical
sense is an important criterion in the selection of a model. For simple models we can easily
investigate their properties and use them to interpret the experimental results,

With the aid of mathematical models we can formulate new problems and solve them
mathematically, we can plan new experiments to verify the model and if it is positive, we
can apply the model to solve problems which are important for the advancement of
technology. Mathematical models provide a framework for the analysis, design and opti-
mization of mechanical systems operating in friction conditions. They give us a chance to
exploit the positive effects of friction and to avoid the negative effects at the design stage.

We pay attention to two approaches to the mathematical modelling of dry friction.
Some authors formulate friction descriptions with the aid of postulates being a gener-
alization of experimental facts. The well-known Coulomb friction model, a subdifferential
friction equation proposed by Moreau (1979) and friction laws given by Rabier er ul. (1986)
belong to this group. The second approach gives friction equations deduced from an analysis
of elastic and plastic deformations of surface asperity models [e.g. Halling (1976), Heilmann
and Rigney (1981), Phan-Thicn (1981) and Chailen et al. (1987)]. Simple geometrical solids
(rods, cubes, hemispheres, cones, pyramids, ellipsoids, etc.) were applied in the asperity
modelling.

Dry friction which depends on the sliding direction is called anisotropic friction. A
deviation in the friction force from the direction of sliding and a dependence of the friction
magnitude on the sliding direction are features of contacts with frictional anisotropy.

The primary objective of this study is to prepare mathematical models of anisotropic
friction and to investigate their properties. These models should include a full range of
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anisotropic friction behavior, i.e. centrosymmetric and non-centrosvmmetric effects. It is
solved by the generalization of a phenomenological model of anisotropic friction proposed
by Zmitrowicz (1981, 1988. 1989).

2. EXPERIMENTAL RESULTS

Anisotropic friction is the actual phenomenon. There are many experimental studies
which contribute to anisotropic friction and wear. Some of them are described by Zmi-
trowicz (1989). We include here those studies which were omitted in the previous work,
and those which seem to us to be more important.

Friction depends on the sliding direction as a result of anisotropic surface roughness,
It has been investigated experimentally by Rabinowicz (1957). Halaunbrenner (1960).
Zielinski (1964), Eiss (1985). Felder (1988). Rabinowicz (1957) and Halaunbrenner (1960}
realized experimental investigations of the friction force component normal to the sliding
direction. This component occurs when the friction force direction is different from the
motion direction. The surface topography is very important at the beginning of a test. As
a result of wear, the surface roughness and frictional anisotropy become modified through-
out the duration of sliding.

In substances consisting of more than one component, the surface has a mosaic
structure since different components are exposed at different points on the surface. The
anisotropy of solid surfaces due to their structure has been proved in many ways. The
anisotropy of friction and wear appears essentially in alloys, crystalline, fibrous. reinforced
and composite materials. It was obscerved by Tabor and Williams (1961), Hen-Won Chang
(1983), Herold-Schmidt and Hinsberger (1987), Ciring er al. (1988), Vasiliyeva and
Tofpenets (1989), Jacobs er al. (1990) and Kadijk and Brocese van Groenou (1990). A large
body of litcrature is devoted to experimental observations of anisotropic friction and wear
of polymers and ceramics,

Crystal faces generally have different properties in different directions: hence the
following phenomena are anisotropic: friction (Dyer, 1962; Bowden ¢ al., 1964 ; Childs,
1969 Casey and Wilks, 1973 Enomoto and Tabor, 1980; Buckley and Miyoshi, 1984
Miyoshi and Buckley, 1985), wear (Buckley and Miyoshi, 1984 ; Miyoshi and Buckley,
1985) and hardness (Brookes and Green, 1979 ; Brookes, 1981 ; Szymanski and Szymanski,
1989). The frictional anisotropy has been measured for a single crystal of diamond, copper,
rutite, SiC, magnesium oxide, lithium fluoride, cobalt, beryllium, rhenium, titanium, alu-
minium, iron, sapphire, etc.

Investigations show that friction and wear depend on the crystallographic plane and
on the sliding direction with respect to the crystallographic system. From the experiments
carried out by Casey and Wilks (1973) it is known that the friction of diamond is strongly
dependent on the direction of sliding, varying by up to 300% for (100) fuces. In the case
of the (001) face the friction is highest in the [100] directions and lowest in [110] directions.
The face (001) shows four-fold symmetry, although this can be reduced to two-fold by
polishing (Cascy and Wilks, 1973).

The frictional anisotropy was observed in a rolling contact. Halaunbrenner (1958)
experimentally investigated a dependence of the rolling resistance of a steel cylinder on
motion direction. Two types of base surfuces were applied : with anisotropic roughness
and with anisotropic mechanical propertics (wood and NaCl monocrystal). Furthermore,
anisotropic friction was investigated when a sapphire ball was rolled in various directions
on the cube face of a copper crystal, Dyer (1962). The variation in rolling resistance with
direction was 32%.

3. ANISOTROPIC FRICTION MODELS

Anisotropic friction phenomena are studied and recognized on different levels of
generalization. First trials of the anisotropic friction description are given by Vantorin
(1964), Michatowski and Mroz (1978), Curnier (1984), Felder (1986), Goyal and Ruina
(1988).
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According to the thermodynamical formulation of constitutive equations for friction
(Zmitrowicz, 1987), the friction force vector t can be a function of the sliding velocity unit
vector v (called a sliding direction) and the normal pressure N, e.g.

t= —Nf(v). (1)
where
t=t’k,-ef:;, i=12, (2)
v=uvlees,, j=1,2, (3)
v =1, 4
NeR*. (5)

&2 and ¢, are two two-dimensional vector spaces and {k;} is an orthogonal basis of unit
vectors in &2 and {e;} is an arbitrary unit vector basis in ¢, (Fig. 1).

A linear model of anisotropic friction is defined by the following equation:
= - NClv. (6)
A non-lincar model can be given by a polynomial function of the slip velocity unit vector

t=—-NCyv+Cx¥'+ - +Cv¥" ), -

Cv" '=C,(vRV®...®v) = [(Cy)v...]v.
] —— (8)
2n — 1 copics 2n— [ copics
Friction tensors C,, C,,. .., C, define the frictional anisotropy of contact :

C| = Cilkl ® e,. (9)

CZ = CU“kt ® e/ ® €y ® e, (IO)

o] K,

Fig. 1. Unit vectors of bases of the reference systems.
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C,=C"'k®e® ... De, (L1)
‘_'W_J

2n— 1 copies
ijokdo...,s=12. (12)

They are elements of linear spaces 1., formed by the tensor product of the space £2 and

(2i—1) times space &;. i.e.

Cierli=f2®§2®--'®§2 (13)
[ —
2i— | copies

i=12....n (14)

According to the objectivity axiom only elements with odd numbers of v may be included
in the polynomial (7).

All linear and non-linear models of anisotropic friction described by eqns (6) and (7)
are centrosymmetric.

It is casy to imaginc a contact with non-equivalent motions to both sides in the same
direction. A distribution of elements constructing a surface can make motion casy on one
side of the given direction and ditticult on the opposite side. In other words, there are
differences in forwards and backwards sliding. The phenomenon is familiar to our daily
experience. A physical non-cquivalence on both sides of the sliding direction gives friction
non-symmetry with respect to the sense of the direction (non-centrosymmetric case). For
lincar and non-lincar friction modcls (6) and (7) both senses of the sliding direction are
equivalent.

In the non-centrosymmetric case a change of sense of the sliding direction must be
connccted with it variation in anisotropy description. An introduction of friction tensors
with components depending on the sliding direction makes it possible to define non-
centrosymmetric anisotropy.

Let us assume that the friction tensors are “sliding direction-dependent”, Thus, we
postulate that the friction tensors are functions of the sliding direction parameter «,, i.c.

C,=Cla), i=1,2,...,n, (15)

a,€<0,2n). (16)

a, is a measure of an oriented angle between the unit vector v, of a reference direction in
&£y and the slip velocity unit vector v in &;. Then, components of the friction tensors depend
on the sliding direction with respect to the chosen reference direction.

Let us consider the friction tensor (15) which is a trigonometrical polynomial of the
variable x, with constant tensors Cy.

C(x) =C,y+C, cos(na)+C,sin(ma,), (7
n,m,=0,1,23,..., (18)
C:k5t21=f:®§2®'--®§2~ (l())
;_V__J
2i ~ | copics

k=012, i=12...,n (20)



Constitutive modelling of anisotropic friction 3029

The function (17) is single-valued and has finite values for all arguments x, from the set
(16).

Substituting eqn (17) into (7), we obtain the following constitutive equation of aniso-
tropic friction:

t=—N{[C\y+C, cos(n2)+C, sin(mz)]v+ -+ +[C,o+C,, cos(n,z,)

+C,asin(m,2)]* (v®...®v}. (21
-

2n~ | copies

The parameters n,. n; in eqn (21) may be taken as arbitrary. Symmetry properties and some
physical assumptions will restrict elements of the polynomial (21).

Properties of constant tensors can be investigated easily. [t is difficult if the tensors
have coefficients depending on the sliding direction.

4. PROPERTIES OF ANISOTROPIC FRICTION

The total anisotropic friction coefficient and the angle of friction force inclination for
any sliding direction can be obtained from the following relations:

=Nt (22)

. t-v!
sinff = e 23)

where, v* is a unit vector orthogonal to the sliding direction
vevt =0, |v'| =1, (24)

Friction coeflicients of the friction force components collincar with the sliding direction
and normal to it are given by

= —N 't-v, (25)
ur =N 'tovt, (26)

A curve drawn by the friction force vectors attached to the origin of the coordinate
system is called the hodograph of the friction force. The shape of the curve can be studiced
by finding friction forces in all sliding directions. Some authors assume (by analogy to the
theory of plasticity) that closed and convex curves with the normality condition for sliding
direction contain all the information about frictional anisotropy. In this paper we assume
that the hodograph is represented by closed and non-intersecting curves. In a particular
case (unidirectional friction) the hodograph reduces to a segment of line.

The constitutive equation of friction (21) has the following properties.

Property 1

The friction force equation (21) satisfics the axiom of material objectivity.

A verification of material objectivity must relate to the adequate transformation of v
and the sliding direction parameter «,. Equation (21) has an invariant form with respect
to arbitrary transformation from the full orthogonal group 0. if it obeys the following
condition :

t(Rv, N) = Rt(v, N), VReC. 2n

where
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R '=R’. detR= +1. (28)
t(Rv.N) = —N{[C,+C,,cos{n%.)+C,ssin{mz)]Rv+ .. .. (29)

i, is a measure of an oriented angle between vectors Ry, and Rv. The orthogonal trans-
formation preserves angles. Then. the angle between vectors Rv, and Ry is equal to the
angle between v, and v. Thus. eqn (21) obeys the condition of material objectivity (27).
Notice that the constant friction tensors must be transformed in the general anisotropic
friction case.

Property 2

Any friction tensor C(2,) is positive definite.

From the Second Law of Thermodynamics it follows that in every case of frictional
contact the power of the friction force is non-positive

tv<0, Vo, (30)

where, v is the sliding velocity. Substituting eqn (21) into (30) and taking into account that
N and |v| are positive and that

v

V=
v}

(30

we obtain the following condition

v [Cio+Cy cos (mx)+Cyysin () ot -

+o' [ 0'[C+C, cos () +C,sin(ma)fv.. Ju =0, (32)
S —

neopies neopics

We can replace the inequality (32), e.g. by the following restrictions on the friction tensors

Cla):
v'[C 4+ C cos (m2,)+ Casin (i) = 0, (33)

v ' [C.y+C, cos (ma,)+C,ysin(mx)]v. ..o =0,
— — (34)

ncopices neopies

for every v and a, € {0, 2n). Trigonometrical functions cos (n,%,) and sin (n1,2,) have positive
and negative values for o, € €0, 2r). Thus, conditions (33) and (34) are satisfied for all «,
depending on relations between values of components of the constant tensors Cy,. ..., Cy
(k=0.1,2).

Property 3

The constitutive equation (21) determines anisotropic friction with an arbitrary number
of principal dircctions. Principal directions with different friction values depending on the
sense of the sliding direction and unidirectional principal dircctions can be described by
eqn (21).

These directions are called principal directions of friction which satisfy the following
condition:

t-v: =0. (35

The friction force component normal to the principal direction and the inclination angle
are equal to zero
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u =0, (36)
p=0. 37

Let the base vectors {k,} and {e,} coincide with the orthogonal reference system Oxy.,
and the reference direction v, coincide with the Ox axis. Then, the velocity unit vector
components given with respect to this basis are

[v] = [cosx. sinz]". (38)
The unit vector orthogonal to the slip direction s
[v*] = [sinx, —cosx]". (39)

Equation (21) has the following form in representation notation, if we restrict ourselves to
the second order tensors only :

' = —N[C{+C{cos(nx)+CYsin(mx)]e, (40)

After substitution of the components (39) into the equation of principal directions
(35). we obtain

t'sina,—*cosa, = 0. 4n

Substituting the unit vector components (38) and the friction force components (40) into
this relation yiclds

. ) 2 2 ' . . . N
CoPsint o, — C3' cos* 2, + (Ch' = C) sina, cosa, + [C} 2 sin’ 2, — Ci' cos® o,
+(C1' = Ci?)sina, cos 2] cos (my2,) +[C3* sin’ %,

—Ci'cos? 2, +(CY = C3¥) sina, cosx, ] sin (m,2,) = 0. (42)

The number of principal directions defined by eqn (42) depends on the parameters
nyomy Wy =1o0r m =1 then unidirectional principal directions may exist and the
trigonometrical equation (42) describes at most four principal directions. If n, =4 or
m, = 4 then egn (42) determines at most six principal directions (there are no unidirectional
principal directions). Using isotropic second order constant tensors

Ci = ped”, C{=p,8", CY=pyd", (43)

where, . gy, g5 are friction cocllicients, 67 is the Kronecker delta, and substituting them
into (42) we get the equation satisfied for any x, € {0, 2n). It means that all sliding dircctions
are principal directions independent of the values of the parameters n,, m,. Generally,
arbitrary numbers of principal directions can be described by eqn (42).

It has been shown (Zmitrowicz, 1989) that the constitutive equation with constant
friction tensors (7) can define the number of principal dircctions equal to the highest order
of the friction tensors. In the case of the constitutive equation (21) the number of principal
directions depends on the order of the constant tensors C, and values of parameters n,, m,.
If n,. m, are even numbers then the number of principal directions is at most equal to a sum
of the highest tensor order and a maximum from {n, m;}. If n,, m, are odd numbers then
unidirectional principal directions may exist and the number of principal directions is at
most equal to a sum of the highest tensor order and a maximum from {2n, 2m;}. The
unidirectional principal directions satisfy the condition (35) on one side only, i.e. for v and
not for —v.



3032 A. ZMITROWICZ

Notice that a greater number of principal directions can be described by the constitutive
equation with tensors depending on the sliding direction than by the equation with constant
tensors of a given order.

Property 4

If the parameters n;,, m; are odd numbers then the constitutive equation (21) describes
non-centrosymmetric anisotropic friction.

The inversion — 1 is that transformation which characterizes anisotropy having central
symmetry. There are frictional anisotropies whose symmetry does not imply that — 1 be in
a group of symmetry.

In the case of the constitutive equation (21), we investigate the inversion transformation
with respect to constant tensors C, (i = 1,...,n; k = 0. [, 2) and trigonometrical functions
of the sliding direction parameter «,.

All even order constant tensors C are invariant with respect to the inversion. i.e.

[@' (— l)]-C,k = Cy, (44)

where
Ci=Cl""k®e¢,®..®c¢c, (45)
[é}(—l)]-qsCL’--"'(—l)k,@(—l)e,@...®(—l)e‘. (46)
i=012....n, k=0,1,2, jl....s=12 (47)

In the three-dimensional space, the inversion is equivalent to a rotation of & about a
given axis and next to the reflection with respect to the plane orthogonal to this axis. For
the two-dimensional space the inversion reduces to the rotation about the normal n to the
space of the angle n

—1=R;. (48)

Tensor R; denotes a rotation of n radians about the unit vector n. Thus the following
conditions determine the inversion trunsformation for the trigonometrical functions:

cos [n, (o, + )] = cos (n,a,),

Va,e0,2n): { (49)

sin [m,(a,+ )] = sin (m,a,).

The trigonometrical functions are symmetric with respect to the center of symmetry if n,
m; are even numbers. The central symmetry does not exist if n,, m, are odd numbers.

Property 5
Anisotropic friction description (21) defincs an infinite number of neutral directions if
n,, m,are even numbers. It has a finite number of neutral directions if n,, m; are odd numbers.
The particular sliding direction v which satisfies the condition

t(v,N) = —t(—v,N) 50)
we call the neutral direction of friction. It has the same friction properties (i.e. the friction

coefficient and the angle of the friction force deviation) for both sides of the direction v. If
the sliding direction is defined by the angle 2., then



Constitutive modelling of anisotropic friction 3033

Ba(2) = po(2,+ 1), (51)
B(x.) = B(a.+n). (52)

Centrosymmetric anisotropic friction has an infinite number of neutral directions but
non-centrosymmetric friction has a finite number of these directions. Thus, the constitutive
equation (21) describes: a finite number of neutral directions if n,, m; are odd numbers, an
infinite number of neutral directions if n, m; are even numbers. Linear and non-linear
models with constant friction tensors (6), (7) have an infinite number of neutral directions
in any case.

Property 6

The constitutive equation (21) restricted to single trigonometrical function sine or
cosine and n;, m; equal to odd numbers determines frictional anisotropy with a finite, odd
number of neutral directions. Using two or more trigonometrical functions we can define
anisotropy with an even number of neutral directions.

The constant tensors C, of the constitutive equation (21) are of even order. They
define an infinite number of neutral directions independent of the type of tensor. It implies
that the number of neutral directions of the constitutive equation is determined by the
trigonometrical functions only. A finite number of neutral directions exists for n,, m, equal
to odd numbers. The trigonometrical functions with odd parameters n,, m; have values
with different sense for arguments a, and (a,+ ), where «,€<0, 2n). Thus, zeros of the
trigonometrical functions are values of the functions cqual for both arguments «, and
(2, + 7). We conclude that the number of neutral dircctions is equal to the odd parameters
n,, m,, il the constitutive equation has a single trigonometrical function.

Neutral directions for the constitutive cquation with two or more trigonometrical
functions arc different than those for the single trigonometrical function. Using two or
more trigonometrical functions of different type in the constitutive equation we can get an
even number of neutral directions.

Property 7

Identity, inversion, rotations and mirror reflections are clements of symmetry groups
of the friction tensors C,(a,).

Symmetry propertics are described by specifying a set of linear transformations which
map anisotropic friction in the reference state onto an cquivalent state. Also a composition
of two transformations must satisfy this general rule. The set of all transformations repre-
senting different symmetrics forms a mathematical group. The symmetry groups give the
precise mathematical description of the symmetry properties of anisotropic friction. The
constitutive equation (21) defining anisotropic friction of a contact possessing symmetric
propertics is invariant under the group of transformations describing the symmetry of the
friction.

Thanks to symmetry the number of unknown parameters of the constitutive description
and a number of necessary exerimental measurements can be reduced.

The group of symmetry of the constitutive polynomial is the intersection of the sym-
metry groups of the tensors C,(a,). i=1,2,...,n

4 =%9C)INnYG(CHN...n%(C,). (53)
In the case of the constitutive equation (21), we investigate groups of symmetry with respect
to constant tensors C, and the trigonometrical functions of the sliding direction parameter
a,. The symmetry group of elements of the constitutive polynomial is the intersection of the
symmetry groups of the constant tensors and the trigonometrical functions, i.e.

%(C,ycosna) = 4(C;)) n%(cosn;a,), (54)

%(C,,sinm,a,) = %(C;2) N % (sinm;a). (59)
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The subgroup %(C,) of the full orthogonal group € is called a symmetry group of the
constant tensor C, if it satisfies the following relation:

%(C,) = {R:Re(’.(é R)-C,k = c,,k}, (56)
where
(élé R)-C,k = C/'"'Rk,® Re, ® ... ® Re,. (57)

The full orthogonal group ¢ contains all orthogonal transformations satisfying (28).

We give definitions of symmetry of the trigonometrical functions with respect to the
following transformations : inversion, rotations and mirror reflections. Let us first consider
rotations. Functions cos (n;%2,) and sin (m,«,) are invariant under the rotations of angle ®
and ¥ about normal n to the contact, if they satisfy the following conditions:

3D e0.2r): ¥V 2,€{0.2n).cos [n(x.+D)] = cos (m2,). (58)

IWe0,2n):Va,e0,2r),sin [m,(x.+ V)] = sin (m,2,). (59)

It implics that the rotation angles are related by

5
o="", (60)
n,
5
W= 'Trv[' 61)
m;
m,om, # 0. (62)

The trigonometrical functions satisfy the symmetry conditions for multiples of angles (60),
(61), too. The rotations as elements of the symmetry group are denoted by

Ry.R). (63)

Relations (60), (61) show that the rotation about n through the angle n or its multiple
exists, if parameters n,, m, are even numbers. In these cases, the inversion — 1 is the element
of the symmetry group and the description has a center of symmetry.

The mirror reflection is another clement of the symmetry group. Let J,, denote a
mirror plane orthogonal to the axis m,. The definition of the mirror reflection is

Ju = —IR},. (64)

According to (64) the mirror reflection is equivalent to a rotation (Ry,) about the given
direction m, in the contact plane and to a rotation about the normal n to the plane
(RF = —1).

Let ¢, be an oriented angle between the reference direction unit vector v, and the axis
of the mirror reflection m,
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£€<0,2n). (65)

Then, the arbitrary sliding direction determined by the angle «, after mirror reflection with
respect to the axis m; takes a position in the contact plane defined by the following angle

i, = n+2¢—q,. (66)

Thus. the trigonometrical functions cos (n,%,) and sin (m,x) invariant with respect to
mirror reflections regarding the mirror plane orthogonal to the direction ¢ must satisfy the
following conditions :

cos [n,(n+ 2¢;—a,)] = cos (n;2,),

sin [m,;(n+ 2¢,— )] = sin (ma,). (67)

36€(0.2n):Va,e(0,2n) {

Relations (67) are not equivalent to those for rotations, since there is no rotation which
reproduces mirror reflection.

Using (67) we can determine axes of mirror reflections. The trigonometrical functions
have symmetry with respect to mirror planes orthogonal to the following directions ¢;: for
the function cos (n,a,)

n=1 & =n/2,
no=2 & ={0,n/2},
n, =3, &={n/6,n/2,5/6n)}; (68)

for the function sin (m,2,)

m=1, ¢ =0,
m; =2, g={n/4,3/4n},
m, =3, ¢ =1{0,n/3,2/3n}. (69)

From the point of view of group theory, the identity 1 always belongs to the symmetry
group of anisotropic friction.

All transformations from a given symmetry class of anisotropic friction must have one
stationary point in the contact plane. In other words, all rotations and mirror planes
must intersect at one point. It is obvious, since in the opposite case rotations about non-
intersecting axes or reflections with respect to non-intersecting planes produce a translation
of the contact arca.

Property 8

In the case of non-centrosymmetric anisotropic friction, mirror reflections are with
respect to those principal directions of friction which are collinear with neutral directions
(denoted by J,, ). If there is an infinite number of principal directions or there is no principal
direction, then mirror reflections are with respect to a finite number of neutral dircctions
(denoted by J,,).

There are examples of non-centrosymmetric anisotropic friction with principal direc-
tions but mirror reflections are with respect only to those directions which are sim-
ultancously neutral. If there are no common principal and neutral directions then aniso-
tropic friction has no mirror reflections. Centrosymmetric anisotropic friction has an infinite
number of neutral directions, and the mirror reflections may be with respect to principal
directions.
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There are no mirror reflections with respect to principal directions having different
friction values depending on the sense of the sliding direction, and with respect to unidi-
rectional principal directions. These principal directions are not neutral directions.

Using isotropic tensors C,, tn the constitutive equation and n,, m; equal to odd numbers
we obtain examples of anisotropic friction with a finite number of neutral directions. Mirror
reflections are with respect to these directions.

Property 9

[f in the case of centrosymmetric anisotropic friction there is an infinite number of
principal directions or there is no principal direction, then mirror reflections are with respect
to a finite number of extremal value directions (denoted by J, ).

This sliding direction defined by the oriented angle 2, € {0, 2n) we call the direction of
anisotropic friction extremal value which gives for two functions g, (x,) and pf () extremal
vialues (minimum or maximum). simultancously, i.e.

1 (2) = min {1, (3.) 1 %.€<0,2n)},
or

w2, = max | 1,(4,) 14, €0.2nd}. (70)

and

() = min (£, 4, € €0, 2n) ),
or

i () = max ) (%) &, €0, 2n) ). (71)

Using isotropic tensors €y in the constitutive equation and n,, m, equal to even numbers
we obtain examples of anisotropic friction with an infinite number of principal and neutral
directions. Then, mirror reflections are with respect to a finite number of extremal value
directions,

In the case of isotropic friction all sliding directions are principal, ncutral and extremal
value directions. Mirror reflections are with respect to all sliding directions.

Property 10

If we restrict ourselves to the second and fourth order constant tensors C,, Co, (K = 0,
1, 2) then the following types of tensors can be distinguished with the aid of symmetry
groups : isotropic, anisotropic, orthotropic, tetragonal anisotropic and axisymmetric aniso-
tropic.

The restrictions imposed by the symmetry groups on the form of the sccond and fourth
order constant tensors are described by Zmitrowicz (1981, 1989). Here, types of constant
friction tensors are listed by name with transformations defining their symmetric properties.
We have the following types of constant tensors :

isotropic

4(C) = {C}, (72)

anisotropic

G(Cxy = {£1]. (73)
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orthotropic
g(clk) = { tlv J-', J-:}, (74)
tetragonal anisotropic
g(clk) = {+l' R:v"-.v"usz-J?J-‘}v (75)
axisymmetric anisotropic

where. m, (i = 1,...,4) are principal directions.

Since the linear and non-linear constitutive equations (6), (7) are polynomials, fric-
tional anisotropies have the same symmetries and names as the constant friction tensors.

We extend the considerations presented by Zmitrowicz (1981, 1989) into detailed
properties of axisymmetric anisotropic and unidirectional anisotropic constant tensors of
the second order (C,,). The axisymmetric anisotropic tensor defined by the group of
symmetry (76) has the following properties : the friction coefficient of the normal component
of the friction force, the total friction coefficient and the angle of inclination of the friction
force to the sliding direction are constant for all sliding directions. There are no principal
directions. In this case components of the second order friction tensor C, are restricted by
the following relations:

¢ =CP, = -Ci. )
The friction force vectors given for all sliding directions draw a circle with radius cqual to

It = Ny, (78)

= V(G +(Co?). (79

To avoid repetition, we have assumed in the previous works that the linear trans-
formation (6) is non-singular (in the sense that its determinant is not equal to zero). The
singular, second order friction tensor describes the case with definite friction in one principal
direction and frictionless in the second principal direction (ideal smoothness). Both principal
directions are orthogonal. Some authors call this particular case a unidirectional anisotropic
friction (Vantorin, 1964).

Let us reject the assumption that the friction tensor C,, must be non-singular. Then,
we have

detC,, = 0. (80)

In this case, friction coefficients in two orthogonal principal directions are equal to
1 =0, (81
py=Cy' +C3. (82)
The symmetry group of the unidirectional anisotropic friction is the same as for orthotropic
friction (74). In the case of a singular tensor, the linear transformation (6) maps a unit

circle into a segment of line. The friction force acts only in one direction. The function of
the friction force inclination angle has a discontinuity point.

SAS 29:23-0
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Property 11

Centrosymmetric anisotropic friction with groups of symmetry typical for orthotropic,
anisotropic and tetragonal anisotropic friction and with hodographs of shapes other than
simple curves (ellipse, circle), and anisotropic friction with a four-fold rotation axis can be
described with the aid of the constitutive equation (21) and n,, m, equal to even numbers.

The constitutive equation (21) makes it possible to define types of frictional anisotropy
other than those given by the linear and non-linear equations (6) and (7).

Orthotropic friction with hodographs other than an ellipse can be defined by the
constitutive equation (21). This case occurs if we take orthotropic tensors C,, C;, and n,
equal to even numbers. Then symmetries of orthotropic tensors can coincide with all
symmetries (for n, = 2) or with some symmetries (for n; > 2) of the trigonometrical func-
tion.

Anisotropic friction with 0, 1, 2 principal directions and hodographs different to an
ellipse can be described. We get this case using C,y, C |, anisotropic with an adequate
number of principal directions and n, equal to even numbers. The group of symmetry is of
the type (73).

Furthermore, the constitutive equation (21) can realize tetragonal anisotropy with a
hodograph shape other than that in the non-linear case (7) with the fourth order tensor. It
occurs if we take tetragonal anisotropic fourth order tensors Cyo, C;, and n, =4, 8,....
Using n, = 2 we get the case where the trigonometrical function has fewer symmetries than
the constant tensors C,,, C,,. Symmetries of the tetragonal anisotropic friction occur for
ny =4,

Anisotropic friction with a four-fold rotation axis is realized with the aid of tetragonal
anisotropic tensors C,,, C,, and the function sin (4a,). In this case there are four principal
dircctions but there are no mirror reflections. The symmetry group has identity and four-
fold rotation axis

%, = {+1, RV}, (83)
The multiplication table (Cayley square) has the following form

1 n/2  —~1 32z
1 | n2 -1 3/2n
nj2 | n/2 1 32n 1
~t| -1 3 1 w2
3271 32=n 1 n/2 -1

(84)

This is an Abelian group. The rotation angles #/2, 3/2z and inversion — I define the elements
of the subgroup of rotation about the four-fold rotation axis.

Anisotropic friction with an infinite number of principal directions and hodographs
different to a circle is achieved using C, as isotropic. Its group of symmetry is a subgroup
of the full orthogonal group

Y < 0. (85)

All sliding dircctions are neutral directions for n,, m; equal to even numbers. Thus, mirror
reflections are with respect to extremal value directions. Using isotropic second order
tensors Cq, Cy, and n, = 4 we get [riction with the following group of symmetry:

Go={+ LRI I, J. ) (86)

The mirror reflections are with respect to four extremal value directions s, (i = [,...,4).
This is a special type of tetragonal anisotropic friction with an infinite number of principal
directions.
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Experimental measurements presented by Rabinowicz (1957) are an illustration of the
orthotropic friction. Experiments made by Halaunbrenner (1960) are typical of anisotropic
friction. A similarity of the tetragonal anisotropic friction with experimental investigations
of frictional anisotropy for diamond crystals (Bowden et al., 1964 ; Casey and Wilks, 1973 ;
Enomoto and Tabor, 1980) and for rough surfaces (Zielinski, 1964) can be noticed.

Property 12

Non-centrosymmetric anisotropic friction with symmetry groups of different types.
trigonal anisotropic friction, friction with an infinite number of principal directions and
hodographs other than a circle can be described with the aid of the constitutive equation
(21) and n,, m; equal to odd numbers.

Depending on the values of the parameters n,. m; and types of constant tensors C,, we
get frictional anisotropic descriptions with symmetry groups of different types. For n,, m,
equal to odd numbers frictional anisotropies are non-centrosymmetric. Their groups of
symmetry do not have the inversion element ~1.

In the simplest case the symmetry group of anisotropic friction has only the identity
element

Y= {+1}. 87

This group of symmetry occurs for the constitutive equation (21) restricted to the second
order tensors, if ny, my arc equal to odd numbers and tensors Cy are without special
symmetrics. If tensors C, have symmetries which do not coincide with symmetries of
trigonometrical functions, then we get the same result.

Another type of anisotropic friction has the symmetry group produced by identity and
mirror reflections with respect to, e.g. principal direction m

G ={+1J,} (88)

This is an Abclian group and its Cayley square has the following form :

(89)

We arrive at this result using C,,,, C,, orthotropic and n, equal to odd numbers. Although,
the fourth order tensors C.,. Ca, being tetragonal anisotropic and 1, equal to odd numbers
give the sume group of symmetry. The mirror reflection is with respect to that principal
direction which coincides with neutral direction.

A special type of trigonal anisotropic friction has the symmetry group produced by
identity, three-fold rotation axis and three mirror reflections with respect to neutral direc-
tionsu, (i =1, 2, 3)

G = {+ LRI J,  Jdu ) (90)

The group of symmetry (90) is a non-Abelian group of sixth order
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1 23r 43 J, J., J.,

1 1 23z 43 J,, J, I,
2/3n} 2/3n 43z 1 Jo,  da, d
43n 143z 1 23n J., 4, J,,

Jo | o U A 1 23n 43 en

Joo | J, O 43 1 23
Joo | d A ., 23m 43n 1

This type of friction we derive using C,,, C,, tsotropic and n, = 3. It also acts for the fourth
order isotropic tensors Cy,. €y and 1, = 3.

Using n, m; > 3 we can obtain descriptions with groups of symmetry having new
rotations and mirror reflections. Generally, the number of mirror reflections of the consti-
tutive description with isotropic tensors C, and arbitrary a1, m, is equal to the number of
mirror reflections of the trigonometrical functions. In all these cases the groups of symmetry
are subgroups of the full orthogonal group (85). Allsliding directions are principal directions
and hodographs of friction force are of shapes other than a circle.

The effect of non-centrosymmetric anisotropic friction was experimentally observed for
rough surfaces by Halaunbrenner (1960). Furthermore, non-centrosymmetric wear was
obscrved by Kadijk and Brocese van Groenou (1990).

5. A COMPOSITION OF TWO DIFFERENT FRICTIONAL ANISOTROPIES

Our analysis of the centrosymmetric and non-centrosymmetric anisotropic friction has
been related to friction forces during the sliding of two contacting surfaces with single
isotropic and anisotropic frictional propertics. Now, we study frictional forces during the
sliding of surfaces with different anisotropic friction propertics.

Assume that there are orthogonal reference systems on both contacting surfaces. The
coeflicients of the constant friction tensors C, and parameters n,, m; can be determined
experimentally by shiding a third body with isotropic friction propertics on the surfaces of
each contacting body. Thus, we get representations of the tensors ((‘7’,,,, {CJ,* and values of
the parameters (plzz, (zzz:, (nlz), (r;x,, They describe friction propertics of surfaces (1) and (2),
respectively.

Relative positions of the contacting surfaces are described by an angle ¢ (Fig. 2). Then
the following relation holds between the unit vectors of the bases of the reference systems

i
x

Fig. 2. Relative positions of the reference systems at the contact point of surfaces (1) and (2).
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(p3) (

k, =Bk, ij=12, 92)
where
, cosep —sing
/] = =
[B:1= [sin«p cos ¢ ] = [B] 3)

is an orthogonal rotation matrix.
.. )
We assume the reference directions v, and v, on both the contact surfaces. The angle

» . .. . . . . [8}]
¢ determines relative positions of the reference directions (Fig. 2). Both unit vectors ;0
(s = 1, 2) coincide at the initial position, i.e. for ¢ = 0°. Then, the following relation holds

. g . . h (g}
between the sliding direction parameters a, and a, on the surfaces (1) and (2)

2 (L))

a = o, +@. (94)

Let us assume that for a given normal pressure the friction force on the contact surface
during relative sliding is equal to the product of a “composition coefficient’ by the sum of
the friction forces obtained for each surface taken separately, i.e.

(h (D

t=x(t+t). 95)
m %)
The forces t and t correspond to friction when sliding a third body with isotropic friction
properties along the contacting surfaces. The composition coefficient «k is an experimental
quantity and its value does not aflect the description of the directional propertics of friction.
The friction forces for surfaces (1) and (2) can be represented by

) 0 (0 ) (5 () (s} N
t = —N[Cl (av)v+c2 (a'.)vj_*_ +C,,(a,,)v"" I]- s=1,2, (96)

where the friction tensors have the following form;

(D (n (s) {x) () (9 (s) . () (s} .
C(a,) =Cyu+C,cos(n a,)+Cphsin(ma,), i=12...,n 97

After substituting the friction forces (96) and the transformation relations (92) and (94)
into eqn (95), we obtain the friction force relative to the contact of two different surfaces

t= —N[C.(a,.)v+C3(a,.)v’+ - (98)

According to the definition (95), the matrix representations of the friction tensors C,(a,)
and C,(a,) are defined by

1 2
€\ ()] = x{((i"), o+ (C), , COS ((r:), o)+ (('I). ,sin (;r? L) + BT(C)H,B

T(Z) () T(Z) R )
+BTC, ,Bcos [n, (¢, +¢)]+B'C,,Bsin[m, (¢, +¢)]} (99)

(1)) (§3] ( (2
[€2@)] = {Cro+Ch, cos (n>,) + Cay sin () + BT(B'C3,B)B

+BT(B'C,,B)Bcos [ (z, +@)] + BT(B"Cy, B)Bssin [, (2, + @)]}.  (100)

) . .
The constant tensors C, transform according to the transformation rule for tensors, and
the arguments of the trigonometrical functions transform with respect to the rule (94).
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Let us consider some particular cases of the friction force for various contacts. Taking
both surfaces with centrosymmetric anisotropic frictions we get a centrosymmetric aniso-
tropic friction as a result of composition of these surfaces. The centrosymmetric friction in
this case depends on the relative position of the contacting surfaces.

When the surface (1) has a non-centrosymmetric anisotropic friction and the surtuce
(2) a centrosymmetric anisotropic friction, then frictional properties of the contact are non-
centrosymmetric. A contact of the surface (1) having centrosymmetric friction properties
and the surface (2) with non-centrosymmetric properties has a non-centrosymmetric aniso-
tropic friction.

Generally the composition of two surfaces with non-centrosymmetric anisotropic fric-
tion properties gives a non-centrosymmetric anisotropic friction force. Although, for the
given type of non-centrosymmetric friction and the relative position of the contacting
surfaces we can obtain a centrosymmetric friction, in this case, too.

6. CONCLUSIONS

(1) Constitutive equations describing centrosymmetric (n,. m, even numbers) and non-
ceatrosymmetric (n,, m, odd numbers) anisotropic friction are presented in this paper.
Mathematical properties of the constitutive equations define a range of possible applications
of the anisotropic friction models.

(2) Neutral and extremal value directions of friction have been defined. There are
anisotropic frictions with a finite number (1. m, odd numbers) and with an infinite number
(n,. m, cven numbers) of neutral directions.

(3) Symmetry groups of centrosymmetric and non-centrosymmetric anisotropic fric-
tion contain rotations and mirror reflections. Mirror reflections may be with respect to
principal, ncutral (n,, m, odd numbers) and extremal value (n,, m; cven numbers) directions.

(4) The constitutive equations describe an arbitrary number of principal directions,
and principal directions with difterent friction values depending on the sense of the direction,
and unidirectional principal directions,

(5) The constitutive cquations define orthotropic, anisotropic and tetragonal aniso-
tropic friction force hodographs of shapes other than in the case of lincar and non-lincar
models with constunt friction tensors.

Frictional anisotropy can play a major role in engineering applications of monocrystals.
The orientation of the crystal face is important in the case of dinmond, corundum, SiC, etc.
used in technological operations (e.g. in drawing, cutting, abrasive disks, wire druwing and
long-life bearings). Special abrasive tools can be produced by adequate orientation and
distribution of abrasive grains with respect to a workpiece.
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